Kyoto tweet crop

[募集]シンガポール工科デザイン大学との共同ワークショップ「Decoding Data Landscapes」の参加者を募集しますApplication: “Decoding Data Landscapes”, Open Collaborative Workshop with SUTD

KYOTO Design Lab[D-lab]は、下記の日程でシンガポール工科デザイン大学[SUTD]との共同ワークショップ「Decoding Data Landscapes」を開催いたします。

多くの人々が日々活用しているSNSの地理情報がついた投稿データを活用して、都市の中の場所性を考察します。都市空間への社会的および空間的な洞察と介入を導き出すために、大規模なデータ学習と機械学習の方法を探ることに焦点を当てます。具体的には、データ分析とビジュアライゼーションの初学者から中級者を対象に、都市・建築の文脈におけるツール(Python)やテクニックの基本的な理論と方法を紹介します。

第2回となる本ワークショップは、大規模なデータを使用するだけでなく、都市計画で応用可能な情報源の発見や機械学習の応用方法を学びます。

Decoding Data Landscapes
都市はつぶやく—ビッグデータ活用による京都の都市解析

日程|2018年6月25日[月]-28日[木]
会場|KYOTO Design Lab 2Fほか

ワークショップリーダー
サム・コンラッド・ジョイス 助教[SUTD]

シンガポール工科デザイン大学助教。Buro Happoldにてデザインシステム・アナリストを務め、プロジェクトのジオメトリー・構造・基本計画に携わったのち、Foster+PartnersのR&Dグループを率いた。教育者としても国際的に活動し、ロンドンのAAスクールのテクニカル・スタディーズ、またスウェーデンのチャルマース工科大学などで教鞭を執る経験を持つ。
博士課程では、建築・エンジニアリングデザインにおけるコンピュテーションを研究。効率的なDSE(デザイン・スペース・エクスプロレーション)と意思決定のための、豊富なデータを有するシステム開発を目的とし、そのためにスケーラブルな分散コンピューティング・多目的最適化・ビッグデータ分析・AI・ウェブベースのビジュアリゼーションなどにおける新しい技術を統合して利用している。

定員
若干名(最大15名)

参加資格
全学年、全専攻、一般からの参加を歓迎します
データ解析、英会話のスキルは問わないが、Pythonの使用経験があることが望ましい
原則、すべてのワークショップ日程に参加できること

応募締切
2018年6月15日[金] 18:00まで

応募方法
下記の申し込みフォームより必要事項を記入のうえご応募ください。
https://www.kit.ac.jp/form/view/index.php?id=52749


隔週月曜日発行のメールマガジン、D-labの活動をまとめてお届けします。


Outline
Big-data and Machine learning are slated to change the way that we live, work and play. The analysis of big-data has shown new ways to see the world and demonstrated a powerful capability to influence if applied well. Equally, general machine learning and specifically neural networks have enabled radically new ways of processing data; resulting in new products and services. Showing the ability to outperform humans in some fields, but also recently to be creative producers of content. In contrast to other industries architecture has been slow to embrace these topics, however with the advent of modern computing and tools they are now sufficiently accessible to be tractable to our community and design problems.

This is an exciting epoch and one that architects should embrace so that they can act to shape the future use of this technology in design to one which serves in the interests of good architecture.This workshop will focus on exploring a big-data and machine learning approaches to derive social and spatial insights and interventions into urban spaces. Specifically introducing students who may not be familiar with these topics, with the basic theory and methods to allow them to apply these tools and techniques to design in the urban context.

The field of inquiry will be Kyoto and Singapore, using public data-sets from Twitter andInstagram, including a 12 million geographically located tweets from 2012-2015. Students will be challenged with investigating relevant architectural and spatial questions, relating to social and liveability which the data can help uncover. Learning how to develop these in to analytical questions and machine learning routines, using the big data as well as finding other sources with urban plans to link space to activity by finding correlations. Initially with visualisations to link the social and digital space in ways that can help designers and master planners to understand the city in more rich ways, but also developing creative ML which could act with the human designer, specifically Generative Adversarial Networks.

This workshop is standalone and will assume no prior knowledge except for some experience in Python programming. It is designed to introduce new topics not previously covered and provide new skills specifically in A.I.. This workshop is part of a trial for research orientated visiting workshops in the graduate programme.

Date: 25-28 June, 2018
Venue: KYOTO Design Lab 2F

Workshop Leader
Assistant Professor Sam Conrad Joyce [SUTD]
Sam Conrad Joyce is an Assistant Professor in Architecture and Sustainable Design at the Singapore University of Technology and Design.
Prior to this he was an Associate at Foster + Partners, in the Applied Research and Development group leading structural integration. Before this he held a role as Design Systems Analyst at Buro Happold working on geometrical, structural and master-planning projects.
He has taught internationally including Technical Studies in the Architectural Association, London, and Design Programming at Chalmers University, Gothenburg, Sweden.
His doctoral studies focus on computation for integrated architectural and engineering design, focussing on professional practice. Aiming to develop data rich systems for effective design space exploration and executive decision making. To enable this his work synthesizes and applies new techniques in distributed and scalable computing, multi-objective optimization, big data analytics, artificial intelligence and web based visualisation.

Maximum participants
15

Participants Qualifications
The opportunity is open to public participants
Principle, participants need to be in all of the workshop schedule

Application deadline
18:00, Monday 15 May, 2018

Application form
Please fill in the bellow form and send it.
https://www.kit.ac.jp/form/view/index.php?id=52749


D-lab send news summary every other Monday.


Related Links
Related Links
Related Posts
Share